Deconfliction & Separation Management


Air Traffic Separation and Collision Avoidance

Safe separation for the UTM

Ciconia deals with Deconfliction & Safe Separation for "low & slow" since 2011 with the C&CAS: "Control & Collision Avoidance System"

Safe separation for the UTM - New standards & terminology required:

Examples:

- 'Street roof' altitude
- Max speed between buildings: horizontal, vertical
- Maximum density of air traffic in a given volume
- Minimum DbP (Distance between Platforms)
- Minimum TtC (Time to Collision) between platforms
- Speed control

'Street Roof' Altitude:

- Only vertical speed below street roof?
- Stop before climbing over street roof?

Setting 'street roof':

'Density limit' - Maximum platforms in a given air volume:

- Set by regulator
- Enforced by:
 - Strategic level while allocating air space to users
 - C&CAS decentralized density control

New standards & terminology required:

Separation between platforms:

Minimum DbP (Distance between Platforms)

Minimum TtC (Time to Collision) between platforms

Drone 1
max speed = 15m/s


TtC = 15sec.
$$\frac{Drone 2}{max speed = 15m/s}$$

$$\frac{45}{\underline{0m}} = 15sec.$$

$$\frac{45}{(15m/s + 15m/s)}$$

Test case 1: 5 drones operating in 5 areas Min DbP (Distance between Platforms) > 450m Min TtC (time to Collision) >= 15 sec.

Test case 2:

5 drones operating in 5 areas
Min DbP (Distance between Platforms) > 120m
Min TtC (time to Collision) >= 15 sec.

To maintain TtC>= 15sec.,
Drones 2 & 4 must slow to 4m/sec
[120m/(4m/s+4m/s)=15sec]

Test case 2:

5 drones operating in 5 areas
Min DbP (Distance between Platforms) > 120m
Min TtC (time to Collision) >= 15 sec.

Who will slow the drones in real time?

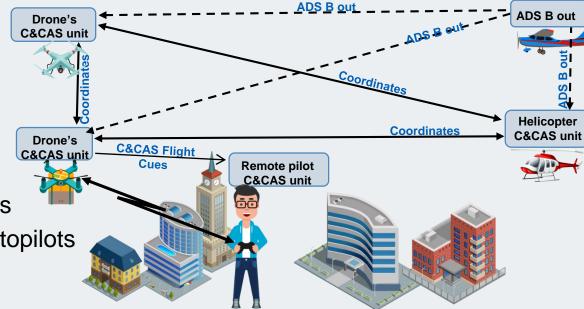
C&CAS – decentralized density control

Safe separation for the UTM – mew standards & terminology required:

Ciconia decentralized C&CAS:

- Monitors constantly at the vehicle level:
 - DbP (Distance between Platforms)
 - TtC (Time to Collision)
 - RoC (Rate of Closure)
 - Traffic density
- Informs operators of potential separation violation
- Displays steering commands to pilots; onboard & remote
- Takes control over autopilot to avoid separation violation

Enforcement of separation limits


Ciconia's decentralized C&CAS (Control & Collision Avoidance)

- A V2V network (remote ID?)
- ADS-B In data

C&CAS introduces:

Flight cues to human pilots

Steering commands to autopilots

Conclusion

New terminology & limits required ('street roof', 'traffic density', etc.)

- As sophisticated as the ATM may be, there will be midair traffic conflicts!
- Decentralized monitoring & enforcement is the only way to ensure safety of flight and efficient use of airspace

Conclusion (Cont.)

Ciconia's C&CAS has been proven in flight tests

Decentralized C&CAS will allow more traffic while keeping highest safety standards

Thank you!